A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this problem in time and memory complexity of $\mathcal{O}(n^2)$. Central to our algorithm is a precise parametric characterization of the cost function across various nodes of the graph corresponding to distinct variables. Our computational experiments conducted on both synthetic and real-world datasets demonstrate the superior performance of our proposed algorithm compared to existing algorithms and state-of-the-art mixed-integer optimization solvers. An important application of our algorithm is in the real-time inference of Gaussian hidden Markov models from data affected by outlier noise. Using a real on-body accelerometer dataset, we solve instances of this problem with over 30,000 variables in under a minute, and its online variant within milliseconds on a standard computer. A Python implementation of our algorithm is available at https://github.com/aareshfb/Tree-Parametric-Algorithm.git.

Article

Download

View A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees