The problem considered is a multi-objective optimization problem, in which the goal is to find an optimal value of a vector function representing various criteria. The aim of this work is to develop an algorithm which utilizes the trust region framework with probabilistic model functions, able to cope with noisy problems, using inaccurate functions and gradients. We prove the almost sure convergence of the proposed algorithm to a Pareto critical point if the model functions are good approximations in probabilistic sense. Numerical results demonstrate effectiveness of the probabilistic trust region by comparing it to competitive stochastic multi-objective solvers. The application in supervised machine learning is showcased by training non discriminatory Logistic Regression models on different size data groups. Additionally, we use several test examples with irregularly shaped fronts to exhibit the efficiency of the algorithm.