A novel UCB-based batch strategy for Bayesian optimization

The optimization of expensive black-box functions appears in many situations. Bayesian optimization methods have been successfully applied to solve these prob- lems using well-known single-point acquisition functions. Nowadays, the develop- ments in technology allow us to perform evaluations of some of these expensive function in parallel. Therefore, there is a need for batch infill criteria … Read more

An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

Bilevel optimization with a multi-objective lower-level problem: Risk-neutral and risk-averse formulations

In this work, we propose different formulations and gradient-based algorithms for deterministic and stochastic bilevel problems with conflicting objectives in the lower level. Such problems have received little attention in the deterministic case and have never been studied from a stochastic approximation viewpoint despite the recent advances in stochastic methods for single-level, bilevel, and multi-objective … Read more

Improved Front Steepest Descent for Multi-objective Optimization

In this paper, we deal with the Front Steepest Descent algorithm for multi-objective optimization. We point out that the algorithm from the literature is often incapable, by design, of spanning large portions of the Pareto front. We thus introduce some modifications within the algorithm aimed to overcome this significant limitation. We prove that the asymptotic … Read more

A Proximal Gradient Method for Multi-objective Optimization Problems Using Bregman Functions

In this paper, a globally convergent proximal gradient method is developed for convex multi-objective optimization problems using Bregman distance. The proposed method is free from any kind of a priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a descent direction. This … Read more

Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

Convergence rates of the stochastic alternating algorithm for bi-objective optimization

Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating … Read more

Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost

The One-Dimensional Cutting Stock Problem with Setup Cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns … Read more

A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems

In multi-objective mixed-integer convex optimization multiple convex objective functions need to be optimized simultaneously while some of the variables are only allowed to take integer values. In this paper we present a new algorithm to compute an enclosure of the nondominated set of such optimization problems. More precisely, we decompose the multi-objective mixed-integer convex optimization … Read more

On implementation details and numerical experiments for the HyPaD algorithm to solve multi-objective mixed-integer convex optimization problems

In this paper we present insights on the implementation details of the hybrid patch decomposition algorithm (HyPaD) for convex multi-objective mixed-integer optimization problems. We discuss how to implement the SNIA procedure which is basically a black box algorithm in the original work by Eichfelder and Warnow. In addition, we present and discuss results for various … Read more