We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, "tame"). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is "partly smooth", ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions hold, guaranteeing smooth behavior of the optimal solution under small perturbations to the objective.
Citation
Research Report, Cornell University, School of ORIE
Article
View Generic identifiability and second-order sufficiency in tame convex optimization