Local superlinear convergence of polynomial-time interior-point methods for hyperbolic cone optimization problems

In this paper, we establish the local superlinear convergence property of some polynomial-time interior-point methods for an important family of conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier function, which must have {\em negative curvature}. We propose a new path-following predictor-corrector scheme, which work only in the dual space. It is based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local superlinear one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size maintaining feasibility. As the optimal solution set is approached, our algorithm automatically tightens the neighborhood of the central path proportionally to the current duality gap.

Citation

CORE Discussion Paper 2009/72, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain (UCL), Belgium, November 2009 (revised: December 2014).

Article

Download

View Local superlinear convergence of polynomial-time interior-point methods for hyperbolic cone optimization problems