Iterative Hard Thresholding Methods for $ Regularized Convex Cone Programming

In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an $\epsilon$-local-optimal solution. We then propose a method for solving $l_0$ regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an $\epsilon$-approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local minimizer of the problem.

Citation

Manuscript, Department of Mathematics, Simon Fraser University, Canada

Article

Download

View Iterative Hard Thresholding Methods for $ Regularized Convex Cone Programming