A Sparse Interior Point Method for Linear Programs arising in Discrete Optimal Transport

Discrete Optimal Transport problems give rise to very large linear programs (LP) with a particular structure of the constraint matrix. In this paper we present an interior point method (IPM) specialized for the LP originating from the Kantorovich Optimal Transport problem. Knowing that optimal solutions of such problems display a high degree of sparsity, we … Read more

New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms

In this paper, we further establish two types of DC (Difference of Convex functions) programming for $l_0$ sparse reconstruction. Our DC objective functions are specified to the difference of two norms. One is the difference of $l_1$ and $l_{\sigma_q}$ norms (DC $l_1$-$l_{\sigma_q}$ for short) where $l_{\sigma_q}$ is the $l_1$ norm of the $q$-term ($q\geq1$) best … Read more

A variable fixing version of the two-block nonlinear constrained Gauss-Seidel algorithm for ℓ1-regularized least-squares

The problem of finding sparse solutions to underdetermined systems of linear equations is very common in many fields as e.g. in signal/image processing and statistics. A standard tool for dealing with sparse recovery is the ℓ1-regularized least-squares approach that has recently attracted the attention of many researchers. In this paper, we describe a new version … Read more

Iterative Hard Thresholding Methods for $ Regularized Convex Cone Programming

In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the … Read more

Compressed Sensing: How sharp is the RIP?

Consider a measurement matrix A of size n×N, with n < N, y a signal in R^N, and b = Ay the observed measurement of the vector y. From knowledge of (b,A), compressed sensing seeks to recover the k-sparse x, k < n, which minimizes ||b-Ax||. Using various methods of analysis — convex polytopes, geometric … Read more

Phase Transitions for Greedy Sparse Approximation Algorithms

A major enterprise in compressed sensing and sparse approximation is the design and analysis of computationally tractable algorithms for recovering sparse, exact or approximate, solutions of underdetermined linear systems of equations. Many such algorithms have now been proven using the ubiquitous Restricted Isometry Property (RIP) [9] to have optimal-order uniform recovery guarantees. However, it is … Read more

Sparse Reconstruction by Separable Approximation

Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution and reconstruction, and compressed sensing (CS) are a few well-known areas in which problems of this type appear. One standard approach is to … Read more