Monotonic (isotonic) Regression (MR) is a powerful tool used for solving a wide range of important applied problems. One of its features, which poses a limitation on its use in some areas, is that it produces a piecewise constant fitted response. For smoothing the fitted response, we introduce a regularization term in the MR formulated as a least distance problem with monotonicity constraints. The resulting Smoothed Monotonic Regrassion (SMR) is a convex quadratic optimization problem. We focus on the SMR, where the set of observations is completely (linearly) ordered. Our Smoothed Pool-Adjacent-Violators (SPAV) algorithm is designed for solving the SMR. It belongs to the class of dual active-set algorithms. We proved its finite convergence { to the optimal solution} in, at most, $n$ iterations, where $n$ is the problem size. One of its advantages is that the active set is progressively enlarging by including one or, typically, more constraints per iteration. This resulted in solving large-scale SMR test problems in a few iterations, whereas the size of that problems was prohibitively too large for the conventional quadratic optimization solvers. Although the complexity of the SPAV algorithm is $O(n^2)$, its running time was growing in our computational experiments almost linearly with $n$.
Citation
Technical Report LiTH-MAT-R--2016/02--SE, Department of Mathematics, Linkoping University, 2016