Stabilized Barzilai-Borwein method

The Barzilai-Borwein (BB) method is a popular and efficient tool for solving large-scale unconstrained optimization problems. Its search direction is the same as for the steepest descent (Cauchy) method, but its stepsize rule is different. Owing to this, it converges much faster than the Cauchy method. A feature of the BB method is that it … Read more

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

Multipoint secant and interpolation methods are effective tools for solving systems of nonlinear equations. They use quasi-Newton updates for approximating the Jacobian matrix. Owing to their ability to more completely utilize the information about the Jacobian matrix gathered at the previous iterations, these methods are especially efficient in the case of expensive functions. They are … Read more

A Dense initialization for limited-memory quasi-Newton methods

We consider a family of dense initializations for limited-memory quasi-Newton methods. The proposed initialization exploits an eigendecomposition-based separation of the full space into two complementary subspaces, assigning a different initialization parameter to each subspace. This family of dense initializations is proposed in the context of a limited-memory Broyden- Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method that makes use … Read more

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS

We present a MATLAB implementation of the shape-changing sym- metric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms [4, 3] to decompose the trust-region subproblem into two separate problems. Using one of … Read more

Regularized monotonic regression

Monotonic (isotonic) Regression (MR) is a powerful tool used for solving a wide range of important applied problems. One of its features, which poses a limitation on its use in some areas, is that it produces a piecewise constant fitted response. For smoothing the fitted response, we introduce a regularization term in the MR formulated … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance

We consider the directed Steiner tree problem (DSTP) with a constraint on the total number of arcs (hops) in the tree. This problem is known to be NP-hard, and therefore, only heuristics can be applied in the case of its large-scale instances. For the hop-constrained DSTP, we propose local search strategies aimed at improving any … Read more

Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-type Constraints and a Regularization Method

Optimization problems with cardinality constraints are very dicult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also discussed in … Read more

Sparsity Optimization in Design of Multidimensional Filter Networks

Filter networks are used as a powerful tool aimed at reducing the image processing time and maintaining high image quality. They are composed of sparse sub-filters whose high sparsity ensures fast image processing. The filter network design is related to solving a sparse optimization problem where a cardinality constraint bounds above the sparsity level. In … Read more

On Efficiently Combining Limited Memory and Trust-Region Techniques

Limited memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited memory methods are usually combined with a line search. We show how to efficiently … Read more