Subset selection in sparse matrices

In subset selection we search for the best linear predictor that involves a small subset of variables. From a computational complexity viewpoint, subset selection is NP-hard and few classes are known to be solvable in polynomial time. Using mainly tools from discrete geometry, we show that some sparsity conditions on the original data matrix allow us to solve the problem in polynomial time.

Citation

Submitted manuscript

Article

Download

View Subset selection in sparse matrices