We address high-dimensional zero-one random parameters in two-stage convex conic optimization problems. Such parameters typically represent failures of network elements and constitute rare, high-impact random events in several applications. Given a sparse training dataset of the parameters, we motivate and study a distributionally robust formulation of the problem using a Wasserstein ambiguity set centered at the empirical distribution. We present a simple, tractable, and conservative approximation of this problem that can be efficiently computed and iteratively improved. Our method relies on a reformulation that optimizes over the convex hull of a mixed-integer conic programming representable set, followed by an approximation of this convex hull using lift-and-project techniques. We illustrate the practical viability and strong out-of-sample performance of our method on nonlinear optimal power flow and multi-commodity network design problems that are affected by random contingencies, and we report improvements of up to 20\% over existing sample average approximation and two-stage robust optimization methods.
Article
View Data-Driven Two-Stage Conic Optimization with Zero-One Uncertainties