Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

A Lagrangian Dual Method for Two-Stage Robust Optimization with Binary Uncertainties

This paper presents a new exact method to calculate worst-case parameter realizations in two-stage robust optimization problems with categorical or binary-valued uncertain data. Traditional exact algorithms for these problems, notably Benders decomposition and column-and-constraint generation, compute worst-case parameter realizations by solving mixed-integer bilinear optimization subproblems. However, their numerical solution can be computationally expensive not only … Read more

Joint Routing of Conventional and Range-Extended Electric Vehicles in a Large Metropolitan Network

Range-extended electric vehicles combine the higher efficiency and environmental benefits of battery-powered electric motors with the longer mileage and autonomy of conventional internal combustion engines. This combination is particularly advantageous for time-constrained delivery routing in dense urban areas, where battery recharging along routes can be too time-consuming to economically justify the use of all-electric vehicles. … Read more

A Globally Convergent Distributed Jacobi Scheme for Block-Structured Nonconvex Constrained Optimization Problems

Motivated by the increasing availability of high-performance parallel computing, we design a distributed parallel algorithm for linearly-coupled block-structured nonconvex constrained optimization problems. Our algorithm performs Jacobi-type proximal updates of the augmented Lagrangian function, requiring only local solutions of separable block nonlinear programming (NLP) problems. We provide a cheap and explicitly computable Lyapunov function that allows … Read more

Robust Vehicle Routing under Uncertainty via Branch-Price-and-Cut

This paper contemplates how branch-price-and-cut solvers can be employed along with the robust optimization paradigm to address parametric uncertainty in the context of vehicle routing problems. In this setting, given postulated uncertainty sets for customer demands and vehicle travel times, one aims to identify a set of cost-effective routes for vehicles to traverse, such that … Read more

Optimization under rare chance constraints

Chance constraints provide a principled framework to mitigate the risk of high-impact extreme events by modifying the controllable properties of a system. The low probability and rare occurrence of such events, however, impose severe sampling and computational requirements on classical solution methods that render them impractical. This work proposes a novel sampling-free method for solving … Read more

Failure Probability Constrained AC Optimal Power Flow

Despite cascading failures being the central cause of blackouts in power transmission systems, existing operational and planning decisions are made largely by ignoring their underlying cascade potential. This paper posits a reliability-aware AC Optimal Power Flow formulation that seeks to design a dispatch point which has a low operator-specified likelihood of triggering a cascade starting … Read more

Data-Driven Two-Stage Conic Optimization with Zero-One Uncertainties

We address high-dimensional zero-one random parameters in two-stage convex conic optimization problems. Such parameters typically represent failures of network elements and constitute rare, high-impact random events in several applications. Given a sparse training dataset of the parameters, we motivate and study a distributionally robust formulation of the problem using a Wasserstein ambiguity set centered at … Read more

Robust Optimization of a Broad Class of Heterogeneous Vehicle Routing Problems under Demand Uncertainty

This paper studies robust variants of an extended model of the classical Heterogeneous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles with different capacities, availabilities, fixed costs and routing costs is used to serve customers with uncertain demand. This model includes, as special cases, all variants of the HVRP studied in the literature … Read more

A scenario decomposition algorithm for strategic time window assignment vehicle routing problems

We study the strategic decision-making problem of assigning time windows to customers in the context of vehicle routing applications that are affected by operational uncertainty. This problem, known as the Time Window Assignment Vehicle Routing Problem, can be viewed as a two-stage stochastic optimization problem, where time window assignments constitute first-stage decisions, vehicle routes adhering … Read more