Adaptive Distributionally Robust Optimization

We develop a modular and tractable framework for solving an adaptive distributionally robust linear opti- mization problem, where we minimize the worst-case expected cost over an ambiguity set of probability dis- tributions. The adaptive distrbutaionally robust optimization framework caters for dynamic decision making, where decisions can adapt to the uncertain outcomes as they unfold in … Read more

Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach

Emergency care necessitates adequate and timely treatment, which has unfortunately been compromised by crowding in many emergency departments (EDs). To address this issue, we study patient scheduling in EDs so that mandatory targets imposed on each patient’s door-to-provider time and length of stay can be collectively met with the largest probability. Exploiting patient flow data … Read more