Polyhedral Approximation Strategies in Nonconvex Mixed-Integer Nonlinear Programming

Different versions of polyhedral outer approximation is used by many algorithms for mixed-integer nonlinear programming (MINLP). While it has been demonstrated that such methods work well for convex MINLP, extending them to solve also nonconvex problems has been challenging. One solver based on outer linearization of the nonlinear feasible set of MINLP problems is the … Read more

The Supporting Hyperplane Optimization Toolkit

In this paper, an open source solver for mixed-integer nonlinear programming (MINLP) problems is presented. The Supporting Hyperplane Optimization Toolkit (SHOT) combines a dual strategy based on polyhedral outer approximations (POA) with primal heuristics. The outer approximation is achieved by expressing the nonlinear feasible set of the MINLP problem with linearizations obtained with the extended … Read more

A Review and Comparison of Solvers for Convex MINLP

In this paper, we present a review of deterministic software for solving convex MINLP problems as well as a comprehensive comparison of a large selection of commonly available solvers. As a test set, we have used all MINLP instances classified as convex in the problem library MINLPLib, resulting in a test set of 366 convex … Read more

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the … Read more