Automatic Reformulations for Convex Mixed-Integer Nonlinear Optimization: Perspective and Separability

Tight reformulations of combinatorial optimization problems like Convex Mixed-Integer Nonlinear Programs (MINLPs) enable one to solve these problems faster by obtaining tight bounds on the optimal value. We consider two techniques for reformulation: perspective reformulation and separability detection. We develop routines for the automatic detection of problem structures suitable for these reformulations and implement new … Read more

Projective Cutting Planes for General QP with Indicator Constraints

General quadratic optimization problems with linear constraints and additional indicator constraints on the variables are studied. Based on the well-known perspective reformulation for mixed-integer quadratic optimization problems, projective cuts are introduced as new valid inequalities for the general problem. The key idea behind the theory of these cutting planes is the projection of the continuous … Read more

Linearization and Parallelization Schemes for Convex Mixed-Integer Nonlinear Optimization

We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate … Read more

Outer Approximation for Global Optimization of Mixed-Integer Quadratic Bilevel Problems

Bilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP … Read more

Sample Average Approximation for Stochastic Nonconvex Mixed Integer Nonlinear Programming via Outer Approximation

Stochastic mixed-integer nonlinear programming (MINLP) is a very challenging type of problem. Although there have been recent advances in developing decomposition algorithms to solve stochastic MINLPs, none of the existing algorithms can address stochastic MINLPs with continuous distributions. We propose a sample average approximation-based outer approximation algorithm (SAAOA) that can address nonconvex two-stage stochastic programs … Read more

Solving Heated Oil Pipeline Problems Via Mixed Integer Nonlinear Programming Approach

It is a crucial problem how to heat oil and save running cost for crude oil transport. This paper strictly formulates such a heated oil pipeline problem as a mixed integer nonlinear programming model. Nonconvex and convex continuous relaxations of the model are proposed, which are proved to be equivalent under some suitable conditions. Meanwhile, … Read more

A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints

We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal component analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly … Read more

Application of outer approximation to forecasting losses and scenarios in the target of portfolios with high of nonlinear risk

The purpose of this paper is to find appropriate solutions to concave quadratic programming using outer approximation algorithm, which is one of the algorithm of global optimization, in the target of the strong of concavity of object function i.e. high of nonlinear risk of portfolio. Firstly, my target model is a mathematical optimization programming to … Read more

A Scalable Algorithm for Sparse Portfolio Selection

The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum … Read more

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems

A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K* cuts} derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all … Read more