A Simple Nearly-Optimal Restart Scheme For Speeding-Up First-Order Methods

We present a simple scheme for restarting first-order methods for convex optimization problems. Restarts are made based only on achieving specified decreases in objective values, the specified amounts being the same for all optimization problems. Unlike existing restart schemes, the scheme makes no attempt to learn parameter values characterizing the structure of an optimization problem, … Read more

Convergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity

We generalize the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions via a new measure of steepness. For the deterministic projected subgradient method, we derive a global $O(1/\sqrt{T})$ convergence rate for any function with at most exponential growth. Our approach implies generalizations of the standard convergence rates for gradient descent on … Read more

Radial Subgradient Descent

We present a subgradient method for minimizing non-smooth, non-Lipschitz convex optimization problems. The only structure assumed is that a strictly feasible point is known. We extend the work of Renegar [1] by taking a different perspective, leading to an algorithm which is conceptually more natural, has notably improved convergence rates, and for which the analysis … Read more