Dual Randomized Coordinate Descent Method for Solving a Class of Nonconvex Problems
We consider a nonconvex optimization problem consisting of maximizing the difference of two convex functions. We present a randomized method that requires low computational effort at each iteration. The described method is a randomized coordinate descent method employed on the so-called Toland-dual problem. We prove subsequence convergence to dual stationarity points, a new notion that … Read more