Sample Average Approximation and Model Predictive Control for Multistage Stochastic Optimization

Sample average approximation-based stochastic dynamic programming and model predictive control are two different methods of approaching multistage stochastic optimization. Model predictive control—despite a lack of theoretical backing—is often used instead of stochastic dynamic programming due to computational necessity. For settings where the stage reward is a convex function of the random terms, the stage dynamics … Read more

Sample average approximation and model predictive control for inventory optimization

We study multistage stochastic optimization problems using sample average approximation (SAA) and model predictive control (MPC) as solution approaches. MPC is frequently employed when the size of the problem renders stochastic dynamic programming intractable, but it is unclear how this choice affects out-of-sample performance. To compare SAA and MPC out-of-sample, we formulate and solve an … Read more