Training Structured Neural Networks Through Manifold Identification and Variance Reduction
This paper proposes an algorithm, RMDA, for training neural networks (NNs) with a regularization term for promoting desired structures. RMDA does not incur computation additional to proximal SGD with momentum, and achieves variance reduction without requiring the objective function to be of the finite-sum form. Through the tool of manifold identification from nonlinear optimization, we … Read more