Global convergence of the Heavy-ball method for convex optimization

This paper establishes global convergence and provides global bounds of the convergence rate of the Heavy-ball method for convex optimization problems. When the objective function has Lipschitz-continuous gradient, we show that the Cesa ́ro average of the iterates converges to the optimum at a rate of $O(1/k)$ where k is the number of iterations. When … Read more

Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems

The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm … Read more

Optimal scaling of the ADMM algorithm for distributed quadratic programming

This paper presents optimal scaling of the alternating directions method of multipliers (ADMM) algorithm for a class of distributed quadratic programming problems. The scaling corresponds to the ADMM step-size and relaxation parameter, as well as the edge-weights of the underlying communication graph. We optimize these parameters to yield the smallest convergence factor of the algorithm. … Read more