A folding preprocess for the max k-cut problem

Given graph G = (V,E) with vertex set V and edge set E, the max k-cut problem seeks to partition the vertex set V into at most k subsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number … Read more

Efficient Use of Quantum Linear System Algorithms in Interior Point Methods for Linear Optimization

Quantum computing has attracted significant interest in the optimization community because it potentially can solve classes of optimization problems faster than conventional supercomputers. Several researchers proposed quantum computing methods, especially Quantum Interior Point Methods (QIPMs), to solve convex optimization problems, such as Linear Optimization, Semidefinite Optimization, and Second-order Cone Optimization problems. Most of them have … Read more