Learning to Choose Branching Rules for Nonconvex MINLPs

Outer-approximation-based branch-and-bound is a common algorithmic framework for solving MINLPs (mixed-integer nonlinear programs) to global optimality, with branching variable selection critically influencing overall performance. In modern global MINLP solvers, it is unclear whether branching on fractional integer variables should be prioritized over spatial branching on variables, potentially continuous, that show constraint violations, with different solvers … Read more