Accelerated projected gradient algorithms for sparsity constrained optimization problems

\(\) We consider the projected gradient algorithm for the nonconvex best subset selection problem that minimizes a given empirical loss function under an \(\ell_0\)-norm constraint. Through decomposing the feasible set of the given sparsity constraint as a finite union of linear subspaces, we present two acceleration schemes with global convergence guarantees, one by same-space extrapolation … Read more

Global convergence and acceleration of projection methods for feasibility problems involving union convex sets

We prove global convergence of classical projection algorithms for feasibility problems involving union convex sets, which refer to sets expressible as the union of a finite number of closed convex sets. We present a unified strategy for analyzing global convergence by means of studying fixed-point iterations of a set-valued operator that is the union of … Read more