A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0

On Duality Gap in Binary Quadratic Programming

We present in this paper new results on the duality gap between the binary quadratic optimization problem and its Lagrangian dual or semidefinite programming relaxation. We first derive a necessary and sufficient condition for the zero duality gap and discuss its relationship with the polynomial solvability of the primal problem. We then characterize the zeroness … Read more