Quadratic regularizations in an interior-point method for primal block-angular problems
One of the most efficient interior-point methods for some classes of primal block-angular problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. Its efficiency depends on the spectral radius—in [0,1)—of a certain matrix in the definition of the preconditioner. Spectral radius close … Read more