A Polyhedral Characterization of Linearizable Quadratic Combinatorial Optimization Problems

We introduce a polyhedral framework for characterizing instances of quadratic combinatorial optimization programs (QCOPs) that are linearizable, meaning that the quadratic objective can be equivalently rewritten as linear in such a manner that preserves the objective function value at all feasible solutions. In particular, we show that an instance is linearizable if and only if … Read more

Characterizing Linearizable QAPs by the Level-1 Reformulation-Linearization Technique

The quadratic assignment problem (QAP) is an extremely challenging NP-hard combinatorial optimization program. Due to its difficulty, a research emphasis has been to identify special cases that are polynomially solvable. Included within this emphasis are instances which are linearizable; that is, which can be rewritten as a linear assignment problem having the property that the … Read more