A relative-error inertial-relaxed inexact projective splitting algorithm

For solving structured monotone inclusion problems involving the sum of finitely many maximal monotone operators, we propose and study a relative-error inertial-relaxed inexact projective splitting algorithm. The proposed algorithm benefits from a combination of inertial and relaxation effects, which are both controlled by parameters within a certain range. We propose sufficient conditions on these parameters … Read more

Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms

This paper derives new inexact variants of the Douglas-Rachford splitting method for maximal monotone operators and the alternating direction method of multipliers (ADMM) for convex optimization. The analysis is based on a new inexact version of the proximal point algorithm that includes both an inertial step and overrelaxation. We apply our new inexact ADMM method … Read more

Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions

In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. … Read more