FISTA and Extensions – Review and New Insights

The purpose of this technical report is to review the main properties of an accelerated composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both convex and strongly convex composite minimization problems and derive its iteration complexities to generate iterates … Read more

Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints

This paper proposes and analyzes a proximal augmented Lagrangian (NL-IAPIAL) method for solving smooth nonconvex composite optimization problems with nonlinear K-convex constraints, i.e., the constraints are convex with respect to the order given by a closed convex cone K. Each NL-IAPIAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite … Read more

Iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function and a full Lagrange multiplier update

This paper establishes the iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian (IAPIAL) method for solving linearly constrained smooth nonconvex composite optimization problems which is based on the classical Lagrangian function and, most importantly, performs a full Lagrangian multiplier update, i.e., no shrinking factor is incorporated on it. More specifically, each IAPIAL iteration consists … Read more

Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems

This paper proposes and establishes the iteration-complexity of an inexact proximal accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained smooth nonconvex composite optimization problems. Each IPAAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a suitable Lagrange multiplier update. It is shown that … Read more

Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms

This paper derives new inexact variants of the Douglas-Rachford splitting method for maximal monotone operators and the alternating direction method of multipliers (ADMM) for convex optimization. The analysis is based on a new inexact version of the proximal point algorithm that includes both an inertial step and overrelaxation. We apply our new inexact ADMM method … Read more

An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems

This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the QP-AIPP method and its variant solve linearly constrained nonconvex composite optimization problems using a quadratic penalty approach where the generated penalized subproblems are solved by a variant of the underlying AIPP … Read more

Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs

This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form f + h where f is a differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with a bounded domain. … Read more

Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs

This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our analysis allows the … Read more

Iteration-Complexity of a Linearized Proximal Multiblock ADMM Class for Linearly Constrained Nonconvex Optimization Problems

This paper analyzes the iteration-complexity of a class of linearized proximal multiblock alternating direction method of multipliers (ADMM) for solving linearly constrained nonconvex optimization problems. The subproblems of the linearized ADMM are obtained by partially or fully linearizing the augmented Lagrangian with respect to the corresponding minimizing block variable. The derived complexity bounds do not … Read more

Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems

This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0,2). To the best of our knowledge, all related papers in the … Read more