A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems

We develop a fast and robust algorithm for solving large scale convex composite optimization models with an emphasis on the $\ell_1$-regularized least squares regression (Lasso) problems. Despite the fact that there exist a large number of solvers in the literature for the Lasso problems, we found that no solver can efficiently handle difficult large scale … Read more