A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more