Single-Forward-Step Projective Splitting: Exploiting Cocoercivity

This work describes a new variant of projective splitting for monotone inclusions, in which cocoercive operators can be processed with a single forward step per iteration. This result establishes a symmetry between projective splitting algorithms, the classical forward backward splitting method (FB), and Tseng’s forward-backward-forward method (FBF). Another symmetry is that the new procedure allows … Read more

Projective Splitting with Forward Steps only Requires Continuity

A recent innovation in projective splitting algorithms for monotone operator inclusions has been the development of a procedure using two forward steps instead of the customary proximal steps for operators that are Lipschitz continuous. This paper shows that the Lipschitz assumption is unnecessary when the forward steps are performed in finite-dimensional spaces: a backtracking linesearch … Read more

Convergence Rates for Projective Splitting

Projective splitting is a family of methods for solving inclusions involving sums of maximal monotone operators. First introduced by Eckstein and Svaiter in 2008, these methods have enjoyed significant innovation in recent years, becoming one of the most flexible operator splitting frameworks available. While weak convergence of the iterates to a solution has been established, … Read more

Projective Splitting with Forward Steps: Asynchronous and Block-Iterative Operator Splitting

This work is concerned with the classical problem of finding a zero of a sum of maximal monotone operators. For the projective splitting framework recently proposed by Combettes and Eckstein, we show how to replace the fundamental subproblem calculation using a backward step with one based on two forward steps. The resulting algorithms have the … Read more