A Reformulation Technique to Solve Polynomial Optimization Problems with Separable Objective Functions of Bounded Integer Variables

Real-world problems are often nonconvex and involve integer variables, representing vexing challenges to be tackled using state-of-the-art solvers. We introduce a mathematical identity-based reformulation of a class of polynomial integer nonlinear optimization (PINLO) problems using a technique that linearizes polynomial functions of separable and bounded integer variables of any degree. We also introduce an alternative … Read more

A Comparative Study of Stability Representations for Solving Many-to-One Matching Problems with Utility-Weighted Objectives, Ties, and Incomplete Lists via Integer Optimization

We consider integer optimization models for finding stable solutions to many-to-one, utility-weighted matching problems with incomplete preference lists and ties. While traditional algorithmic approaches for the stable many-to-one matching problem, such as the Deferred Acceptance algorithm, offer efficient performance for the strict problem setting, adaptation to alternative settings often requires careful customization. Optimization-based approaches are … Read more