A Computational Study of Perspective Cuts

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study … Read more

A Comparative Study of Stability Representations for Solving Many-to-One Matching Problems with Utility-Weighted Objectives, Ties, and Incomplete Lists via Integer Optimization

We consider integer optimization models for finding stable solutions to many-to-one, utility-weighted matching problems with incomplete preference lists and ties. While traditional algorithmic approaches for the stable many-to-one matching problem, such as the Deferred Acceptance algorithm, offer efficient performance for the strict problem setting, adaptation to alternative settings often requires careful customization. Optimization-based approaches are … Read more

Computing Optimized Path Integrals for Knapsack Feasibility

A generating function technique for solving integer programs via the evaluation of complex path integrals is discussed from a theoretical and computational perspective. Applying the method to solve knapsack feasibility problems, it is demonstrated how the presented numerical integration algorithm benefits from pre-optimizing the path of integration. After discussing the algorithmic set-up in detail, a … Read more

Computational study of valid inequalities for the maximum hBccut problem

We consider the maximum k-cut problem that consists in partitioning the vertex set of a graph into k subsets such that the sum of the weights of edges joining vertices in different subsets is maximized. We focus on identifying effective classes of inequalities to tighten the semidefinite programming relaxation. We carry out an experimental study … Read more