On the regularizing behavior of recent gradient methods in the solution of linear ill-posed problems

We analyze the regularization properties of two recently proposed gradient methods applied to discrete linear inverse problems. By studying their filter factors, we show that the tendency of these methods to eliminate first the eigencomponents of the gradient corresponding to large singular values allows to reconstruct the most significant part of the solution, thus yielding … Read more

An efficient gradient method using the Yuan steplength

We propose a new gradient method for quadratic programming, named SDC, which alternates some SD iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective elimination of the components of the gradient along the … Read more

On spectral properties of steepest descent methods

In recent years it has been made more and more clear that the critical issue in gradient methods is the choice of the step length, whereas using the gradient as search direction may lead to very effective algorithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of the Hessian … Read more