Full Stability in Finite-Dimensional Optimization

The paper is devoted to full stability of optimal solutions in general settings of finite-dimensional optimization with applications to particular models of constrained optimization problems including those of conic and specifically semidefinite programming. Developing a new technique of variational analysis and generalized differentiation, we derive second-order characterizations of full stability, in both Lipschitzian and H\”olderian … Read more

CHARACTERIZATIONS OF FULL STABILITY IN CONSTRAINED OPTIMIZATION

This paper is mainly devoted to the study of the so-called full Lipschitzian stability of local solutions to finite-dimensional parameterized problems of constrained optimization, which has been well recognized as a very important property from both viewpoints of optimization theory and its applications. Based on second- order generalized differential tools of variational analysis, we obtain … Read more