Subgradient Convergence Implies Subdifferential Convergence on Weakly Convex Functions: With Uniform Rates Guarantees
In nonsmooth, nonconvex stochastic optimization, understanding the uniform convergence of subdifferential mappings is crucial for analyzing stationary points of sample average approximations of risk as they approach the population risk. Yet, characterizing this convergence remains a fundamental challenge. This work introduces a novel perspective by connecting the uniform convergence of subdifferential mappings to that of subgradient … Read more