Riemannian optimization with finite-difference gradient approximations
Derivative-free Riemannian optimization (DFRO) aims to minimize an objective function using only function evaluations, under the constraint that the decision variables lie on a Riemannian manifold. The rapid increase in problem dimensions over the years calls for computationally cheap DFRO algorithms, that is, algorithms requiring as few function evaluations and retractions as possible. We propose … Read more