Optimality Measures for Performance Profiles

We examine the importance of optimality measures when benchmarking a set of solvers, and show that scaling requirements lead to a convergence test for nonlinearly constrained optimization solvers that uses a mixture of absolute and relative error measures. We demonstrate that this convergence test is well behaved at any point where the constraints satisfy the … Read more

Computing Mountain Passes

We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems. We analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at … Read more

The NEOS Server for Optimization: Version 4 and Beyond

We describe developments associated with Version 4 of the NEOS Server and note that these developments have led to an exponential growth in the number of job submissions. We also provide an overview of some of the research and educational uses for the NEOS Server and discuss future research challenges. Citation Preprint ANL/MCS-P947-0202, Argonne National … Read more

Semismooth Support Vector Machines

The linear support vector machine can be posed as a quadratic program in a variety of ways. In this paper, we look at a formulation using the two-norm for the misclassification error that leads to a positive definite quadratic program with a single equality constraint when the Wolfe dual is taken. The quadratic term is … Read more

Interior point methods for massive support vector machines

We investigate the use of interior point methods for solving quadratic programming problems with a small number of linear constraints where the quadratic term consists of a low-rank update to a positive semi-definite matrix. Several formulations of the support vector machine fit into this category. An interesting feature of these particular problems is the volume … Read more