An Optimal Solution is Not Enough: Alternative Solutions and Optimal Power Systems

Power systems modeling and planning has long leveraged mathematical programming for its ability to provide optimality and feasibility guarantees. One feature that has been recognized in the optimization literature since the 1970s is the existence and meaning of multiple exact optimal and near-optimal solutions, which we call alternative solutions. In power systems modeling, the use … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

Dynamic Risked Equilibrium

We revisit the correspondence of competitive partial equilibrium with a social optimum in markets where risk-averse agents solve multistage stochastic optimization problems formulated in scenario trees. The agents trade a commodity that is produced from an uncertain supply of resources which can be stored. The agents can also trade risk using Arrow-Debreu securities. In this … Read more

Co-optimization of Demand Response and Reserve Offers for a Major Consumer

In this paper we present a stochastic optimization problem for a strategic major consumer who has flexibility over its consumption and can offer reserve. Our model is a bi-level optimization model (reformulated as a mixed-integer program) that embeds the optimal power flow problem, in which electricity and reserve are co-optimized. We implement this model for … Read more

Totally Unimodular Congestion Games

We investigate a new class of congestion games, called Totally Unimodular Congestion Games, in which the strategies of each player are expressed as binary vectors lying in a polyhedron defined using a totally unimodular constraint matrix and an integer right-hand side. We study both the symmetric and the asymmetric variants of the game. In the … Read more

On Cournot-Nash-Walras equilibria and their computation

This paper considers a model of Cournot-Nash-Walras (CNW) equilibrium where the Cournot-Nash concept is used to capture equilibrium of an oligopolistic market with non-cooperative players/ rms who share a certain amount of a so-called rare resource needed for their production, and the Walras equilibrium determines the price of that rare resource. We prove the existence of … Read more

Slice Models in General Purpose Modeling Systems

Slice models are collections of mathematical programs with the same structure but different data. Examples of slice models appear in Data Envelopment Analysis, where they are used to evaluate efficiency, and cross-validation, where they are used to measure generalization ability. Because they involve multiple programs, slice models tend to be data-intensive and time consuming to … Read more

Semismooth Support Vector Machines

The linear support vector machine can be posed as a quadratic program in a variety of ways. In this paper, we look at a formulation using the two-norm for the misclassification error that leads to a positive definite quadratic program with a single equality constraint when the Wolfe dual is taken. The quadratic term is … Read more

Interior point methods for massive support vector machines

We investigate the use of interior point methods for solving quadratic programming problems with a small number of linear constraints where the quadratic term consists of a low-rank update to a positive semi-definite matrix. Several formulations of the support vector machine fit into this category. An interesting feature of these particular problems is the volume … Read more