A Proximal Stochastic Gradient Method with Progressive Variance Reduction

We consider the problem of minimizing the sum of two convex functions: one is the average of a large number of smooth component functions, and the other is a general convex function that admits a simple proximal mapping. We assume the whole objective function is strongly convex. Such problems often arise in machine learning, known … Read more

Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization

We introduce a proximal version of the stochastic dual coordinate ascent method and show how to accelerate the method using an inner-outer iteration procedure. We analyze the runtime of the framework and obtain rates that improve state-of-the-art results for various key machine learning optimization problems including SVM, logistic regression, ridge regression, Lasso, and multiclass SVM. … Read more

A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem

We consider solving the $\ell_1$-regularized least-squares ($\ell_1$-LS) problem in the context of sparse recovery, for applications such as compressed sensing. The standard proximal gradient method, also known as iterative soft-thresholding when applied to this problem, has low computational cost per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it often … Read more