Stochastic Hydro-thermal Unit Commitment via Multi-level Scenario Trees and Bundle Regularization

For an electric power mix subject to uncertainty, the stochastic unit-commitment problem finds short-term optimal generation schedules that satisfy several system-wide constraints. In regulated electricity markets, this very practical and important problem is used by the system operator to decide when each unit is to be started or stopped, and to define how to generate … Read more

On solving multistage stochastic programs with coherent risk measures

We consider a class of multistage stochastic linear programs in which at each stage a coherent risk measure of future costs is to be minimized. A general computational approach based on dynamic programming is derived that can be shown to converge to an optimal policy. By computing an inner approximation to future cost functions, we … Read more

Improving the Performance of Stochastic Dual Dynamic Programming

This paper is concerned with tuning the Stochastic Dual Dynamic Programming algorithm to make it more computationally efficient. We report the results of some computational experiments on a large-scale hydrothermal scheduling model developed for Brazil. We find that the best improvements in computation time are obtained from an implementation that increases the number of scenarios … Read more

Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion

We consider the incorporation of a time-consistent coherent risk measure into a multi-stage stochastic programming model, so that the model can be solved using a SDDP-type algorithm. We describe the implementation of this algorithm, and study the solutions it gives for an application of hydro-thermal scheduling in the New Zealand electricity system. The performance of … Read more