Statistical Inference for Distributed Contextual Multi-armed Bandit

In this paper, we study the online statistical inference of distributed contextual multi-armed bandit problems, where the agents collaboratively learn an optimal policy by exchanging their local estimates of the global parameters with neighbors over a communication network. We propose a distributed online decision making algorithm, which balances the exploration and exploitation dilemma via the … Read more

Confidence Interval Software for Multi-stage Stochastic Programs

When the uncertainty is explicitly modeled in an optimization problem, it is often necessary to use samples to compute a solution, which gives rise to a need to compute confidence intervals around the objective function value that is obtained. In this paper we describe software that implements well-known methods for two stage problems and we … Read more