First-order algorithm with (ln(1/\epsilon))$ convergence for $\epsilonhBcequilibrium in two-person zero-sum games

We propose an iterated version of Nesterov’s first-order smoothing method for the two-person zero-sum game equilibrium problem $$\min_{x\in Q_1} \max_{y\in Q_2} \ip{x}{Ay} = \max_{y\in Q_2} \min_{x\in Q_1} \ip{x}{Ay}.$$ This formulation applies to matrix games as well as sequential games. Our new algorithmic scheme computes an $\epsilon$-equilibrium to this min-max problem in $\Oh(\kappa(A) \ln(1/\epsilon))$ first-order iterations, … Read more