Strong Evaluation Complexity Bounds for Arbitrary-Order Optimization of Nonconvex Nonsmooth Composite Functions
We introduce the concept of strong high-order approximate minimizers for nonconvex optimization problems. These apply in both standard smooth and composite non-smooth settings, and additionally allow convex or inexpensive constraints. An adaptive regularization algorithm is then proposed to find such approximate minimizers. Under suitable Lipschitz continuity assumptions, whenever the feasible set is convex, it is … Read more