BILEVEL OPTIMIZATION AS A REGULARIZATION APPROACH TO PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

We investigate some properties of an inexact proximal point method for pseudomonotone equilibrium problems in a real Hilbert space. Un- like monotone case, in pseudomonotone case, the regularized subprob- lems may not be strongly monotone, even not pseudomonotone. How- ever, every proximal trajectory weakly converges to the same limit, We use these properties to extend … Read more

Convergence rate of inexact proximal point methods with relative error criteria for convex optimization

In this paper, we consider a class of inexact proximal point methods for convex optimization which allows a relative error tolerance in the approximate solution of each proximal subproblem. By exploiting the special structure of convex optimization problems, we are able to derive surprising complexity bounds for the aforementioned class. As a consequence, we show … Read more