A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

Multi-cut stochastic approximation methods for solving stochastic convex composite optimization

The development of a multi-cut stochastic approximation (SA) method for solving stochastic convex composite optimization (SCCO) problems has remained an open challenge. The difficulty arises from the fact that the stochastic multi-cut model, constructed as the pointwise maximum of individual stochastic linearizations, provides a biased estimate of the objective function, with the error being uncontrollable. … Read more

cuHALLaR: A GPU accelerated low-rank augmented Lagrangian method for large-scale semidefinite programming

This paper introduces cuHALLaR, a GPU-accelerated implementation of the HALLaR method proposed in Monteiro et al. 2024 for solving large-scale semidefinite programming (SDP) problems. We demonstrate how our Julia-based implementation efficiently uses GPU parallelism through optimization of simple, but key, operations, including linear maps, adjoints, and gradient evaluations. Extensive numerical experiments across three problem classes—maximum … Read more

Parameter-free proximal bundle methods with adaptive stepsizes for hybrid convex composite optimization problems

This paper develops a parameter-free adaptive proximal bundle method with two important features: 1) adaptive choice of variable prox stepsizes that “closely fits” the instance under consideration; and 2) adaptive criterion for making the occurrence of serious steps easier. Computational experiments show that our method performs substantially fewer consecutive null steps (i.e., a shorter cycle) … Read more

Efficient parameter-free restarted accelerated gradient methods for convex and strongly convex optimization

This paper develops a new parameter-free restarted method, namely RPF-SFISTA, and a new parameter-free aggressive regularization method, namely A-REG, for solving strongly convex and convex composite optimization problems, respectively. RPF-SFISTA has the major advantage that it requires no knowledge of both the strong convexity parameter of the entire composite objective and the Lipschitz constant of … Read more

Universal subgradient and proximal bundle methods for convex and strongly convex hybrid composite optimization

This paper develops two parameter-free methods for solving convex and strongly convex hybrid composite optimization problems, namely, a composite subgradient type method and a proximal bundle type method. Both functional and stationary complexity bounds for the two methods are established in terms of the unknown strong convexity parameter. To the best of our knowledge, the … Read more

An Adaptive Proximal ADMM for Nonconvex Linearly Constrained Composite Programs

This paper develops an adaptive proximal alternating direction method of multipliers (ADMM) for solving linearly constrained, composite optimization problems under the assumption that the smooth component of the objective is weakly convex, while the non-smooth component is convex and block-separable.  The proposed method is adaptive to all problem parameters, including smoothness and weak convexity constants, … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point method … Read more

Proximal bundle methods for hybrid weakly convex composite optimization problems

This paper establishes the iteration-complexity of proximal bundle methods for solving hybrid (i.e., a blend of smooth and nonsmooth) weakly convex composite optimization (HWC-CO) problems. This is done in a unified manner by considering a proximal bundle framework (PBF) based on a generic bundle update framework which includes various well-known bundle update schemes. In contrast … Read more

An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems

This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method for solving linearly-constrained smooth nonconvex composite optimization problems. Each iteration of AS-PAL inexactly solves a possibly nonconvex proximal augmented Lagrangian (AL) subproblem obtained by an aggressive/adaptive choice of prox stepsize with the aim of substantially improving its computational performance followed by a full Lagrangian … Read more