Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. III. Foundations for the k-Dimensional Case with Applications to k=2

We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, (1) we present the general regular solution to Cauchy’s additive functional equation on bounded convex domains. This provides a k-dimensional generalization of the so-called interval lemma, allowing us to deduce affine properties of the function from certain … Read more

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem

We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson’s infinite group problem, that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically, for deciding extremality in this important class of minimal valid functions. ArticleDownload … Read more

Some Relations Between Facets of Low- and High-Dimensional Group Problems

In this paper, we introduce an operation that creates families of facet-defining inequalities for high-dimensional infinite group problems using facet-defining inequalities of lower-dimensional group problems. We call this family sequential-merge inequalities because they are produced by applying two group cuts one after the other and because the resultant inequality depends on the order of the … Read more

Extreme inequalities for infinite group problems

In this paper we derive new properties of extreme inequalities for infinite group problems. We develop tools to prove that given valid inequalities for the infinite group problem are extreme. These results show that integer infinite group problems have discontinuous extreme inequalities. These inequalities are strong when compared to related classes of continuous extreme inequalities. … Read more