Joint rectangular geometric chance constrained programs

This paper discusses joint rectangular geometric chance constrained programs. When the stochastic parameters are elliptically distributed and pairwise independent, we present a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on variable transformation together with piecewise linear approximation method. Our results show … Read more

Stochastic geometric optimization with joint probabilistic constraints

This paper discusses geometric programs with joint probabilistic constraints. When the stochastic parameters are normally distributed and independent of each other, we approximate the problem by using piecewise polynomial functions with non-negative coefficients, and transform the approximation problem into a convex geometric program. We prove that this approximation method provides a lower bound. Then, we … Read more

Threshold Boolean Form for Joint Probabilistic Constraints with Random Technology Matrix

We develop a new modeling and exact solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the … Read more