A Robust Location-Allocation Model for Optimizing a Multi-Echelon Blood Supply Chain Network Under Uncertainty

Designing and planning blood supply chains is very complicated due to its uncertain nature, such as uncertain blood demand, high vulnerability to disruptions, irregular donation, and blood perishability. In this vein, this paper seeks to optimize a multi-echelon blood supply chain network under uncertainty by designing a robust location-allocation model. The magnitude of the earthquake … Read more

Using Neural Networks to Guide Data-Driven Operational Decisions

We propose to use Deep Neural Networks to solve data-driven stochastic optimization problems. Given the historical data of the observed covariate, taken decision, and the realized cost in past periods, we train a neural network to predict the objective value as a function of the decision and the covariate. Once trained, for a given covariate, … Read more

Multi-Echelon Inventory Management for a Non-Stationary Capacitated Distribution Network

We present an inventory management solution for a non-stationary capacitated multi-echelon distribution network involving thousands of products. Assuming backlogged sales, we revisit and leverage the seminal multi-echelon inventory management results in the literature to establish the structural properties of the problem, and derive an efficient and practical solution method. In particular, we describe how the … Read more

Robust planning of production routing problem in closed-loop supply chain of beverage glass bottles

Closed-loop supply chains (CLSC) integrate forward and reverse flows of products and information. This integration helps companies to manage their supply chains better as they have more control and a broader view of the whole chain. Also, companies can have economic and environmental benefits from the returned products. Despite these advantages, managing CLSCs can be … Read more

Distributionally Robust Inventory Management with Advance Purchase Contracts

We propose a distributionally robust inventory model for finding an optimal ordering policy that attains the minimum worst-case expected total cost. In a classical stochastic setting, this problem is typically addressed by dynamic programming and is solved by the famous base-stock policy. This approach however crucially relies on two controversial assumptions: the demands are serially … Read more

Distributional robustness and inequity mitigation in disaster preparedness of humanitarian operations

We study a predisaster relief network design problem with uncertain demands. The aim is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, … Read more

Optimal Robust Policy for Feature-Based Newsvendor

We study policy optimization for the feature-based newsvendor, which seeks an end-to-end policy that renders an explicit mapping from features to ordering decisions. Unlike existing works that restrict the policies to some parametric class which may suffer from sub-optimality (such as affine class) or lack of interpretability (such as neural networks), we aim to optimize … Read more

The probabilistic travelling salesman problem with crowdsourcing

We study a variant of the Probabilistic Travelling Salesman Problem arising when retailers crowdsource last-mile deliveries to their own customers, who can refuse or accept in exchange for a reward. A planner must identify which deliveries to offer, knowing that all deliveries need fulfilment, either via crowdsourcing or using the retailer’s own vehicle. We formalise … Read more

The value of stochastic crowd resources and strategic location of mini-depots for last-mile delivery: A Benders decomposition approach

Crowd-shipping is an emergent solution to avoid the negative effects caused by the growing demand for last-mile delivery services. Previous research has studied crowd-shipping typically at an operational planning level. However, the study of support infrastructure within a city logistics framework has been neglected, especially from a strategic perspective. We investigate a crowd-sourced last-mile parcel … Read more

Improved Branch-and-Cut for the Inventory Routing Problem Based on a Two-Commodity Flow Formulation

This paper examines the Inventory Routing Problem (IRP) with Maximum Level inventory policy. The IRP is a broad class of hard to solve problems with numerous practical applications in the field of freight transportation and logistics. A supplier is responsible for determining the timing and the quantity of replenishment services offered to a set of … Read more