Quasi-Newton approaches to Interior Point Methods for quadratic problems

Interior Point Methods (IPM) rely on the Newton method for solving systems of nonlinear equations. Solving the linear systems which arise from this approach is the most computationally expensive task of an interior point iteration. If, due to problem’s inner structure, there are special techniques for efficiently solving linear systems, IPMs enjoy fast convergence and … Read more

Matrix-Free Interior Point Method

In this paper we present a redesign of a linear algebra kernel of an interior point method to avoid the explicit use of problem matrices. The only access to the original problem data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices. Such a redesign requires the use of suitably preconditioned iterative methods … Read more